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ABSTRACT Two-dimensional 1H NMR spectroscopy over a range of temperature through thermal unfolding has been applied
to the low-spin, ferric cyanide complex of myoglobin from Aplysia limacina to search for intermediates in the unfolding and to
characterize the effect of temperature on the magnetic properties and electronic structure of the heme iron. The observation of
strictly linear behavior from 5 to 80 C� through the unfolding transition for all hyperfine-shifted resonances indicates the absence
of significant populations of intermediate states to the cooperative unfolding with Tm ; 80�C. The magnetic anisotropies and
orientation of the magnetic axes for the complete range of temperatures were also determined for the complex. The anisotropies
have very similar magnitudes, and exhibit the expected characteristic temperature dependence, previously observed in the
isoelectronic sperm whale myoglobin complex. In contrast to sperm whale Mb, where the orientation of the magnetic axis was
completely temperature-independent, the tilt of the major magnetic axis, which correlates with the Fe-CN tilt, decreases at high
temperature in Aplysia limacina Mb, indicating a molecular structure that is conserved with temperature, although more plastic
than that of sperm whale Mb. The pattern of contact shifts reflects a conserved Fe-His(F8) bond and p-spin delocalization into
the heme, as expected for the orientation of the axial His imidazole.

INTRODUCTION

Myoglobins (Mb) are small (;150 residues) globular pro-

teins usually consisting of eight (A–H) helices with a heme

bound via the His F8 (eighth position on helix F), which

function as carriers for molecular oxygen in muscle (1,2).

The highly conserved fold, despite high sequence variability

and relatively small size, has made Mb a paradigm for

studying a variety of properties of proteins. One of these

roles has been in the study of intermediates in a reversible

denaturation of proteins, where mammalian apo-Mb at low

pH undergoes a transition to a partially structured molten

globule (3). The majority of folding studies have been on

sperm whale apo-Mb. The Mb from the sea hare Aplysia
limacina exhibits several novel properties relative to the

typical mammalian Mbs. The characteristic H-bond to sta-

bilize bound O2 is provided by Arg E10 rather than the com-

mon His E7 (4), a position which, in Aplysia Mb, is occupied

by Val. The heme pocket of Aplysia Mb also appears to be

more loose or dynamically less stable, as witnessed by faster

heme reorientation (5) and faster axial His labile proton ex-

change than in mammalian Mb (6) . Lastly, Aplysia, unlike

the mammalian Mbs, readily denatures reversibly as the holo

protein under the influence of a variety of perturbations such

as temperature, pH, and chemical denaturation in the pres-

ence of urea (7,8). Optical studies on Aplysia apoMb have de-

tected an intermediate in the thermal unfolding (9).

Our interests in this report are to assess the utility of 1H

NMR in characterizing the changes in structure brought about

by elevation in temperature through the unfolding transition

to obtain evidence for or against significant populations of in-

termediates before global unfolding. Because the hyperfine

shifts, dhfs, of paramagnetic derivatives of Mbs are consider-

ably more sensitive to perturbations remote from the heme

cavity (10), we choose to study the low-spin, ferric metMbCN

derivative whose 1H NMR spectral parameters are the best

understood of the paramagnetic Mb derivatives (10–14). The

two components of dhf, are

dhf ¼ ddip 1 dcon: (1)

The dipolar (dcon) and contact (dcon) reflect dipolar and scalar

influences of the paramagnetic iron on the 1H chemical

shifts. The more informative dipolar component is given by

(10,15,16)

d
i

dip ¼ ð24pmoNAÞ�1½3Dxaxð3cos
2
u9� 1ÞR�3

1 2Dxrhðsin
2
u9cos2V9ÞR��3

Gða;b; gÞ; (2)

where R, u9, V9 are the coordinates of proton i in an arbitrary,

iron-centered coordinate, x9, y9, z9, (based on the x-ray struc-

ture) as shown in Fig. 1, Dxax and Dxrh are the axial and

rhombic anisotropies of the paramagnetic susceptibility ten-

sor, x, in the magnetic coordinate system, x, y, z (shown in

Fig. 1), and G(a, b, g) represent the Euler angles, a, b, g,

that transform the reference into the magnetic coordinate
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system (16). The anisotropies reflect the strength of the axial

bonds, and the sensitivity of the Euler angles reflects de-

formation of the symmetry from the pseudo-fourfold largely

by the axial His imidazole plane orientation relative to the

heme (17,18). The contact shift, related to the transferred un-

paired p-spin density, ri, is given by (15)

d
i

con ¼ Qri Z=T; (3)

where Q;�63 MHz for a pyrrole methyl, and Z is a constant

for a given nucleus and electronic ground state. The pattern

of di
con for the four heme methyls reflects the orientation of

the axial His imidazole relative to the heme (18–20) via the

angle f in Fig. 1. Even the slightest perturbation of the heme

cavity environment due to perturbing of even a remote por-

tion of the Mb has been shown to exert detectable changes in

ddip and/or dcon (10,11).

Previous detailed 1H NMR studies on wild-type Aplysia
metMbCN had provided comprehensive assignment (6,12)

of the hyperfine-shifted heme cavity residues, and the search

for a correlation between the observed and predicted ddip in

Eq. 1 had also provided (12) the anisotropy and orientation

of the paramagnetic susceptibility tensor at 30�C. Here we

extend such studies on the Aplysia metMbCN over a tem-

perature range up to 85�C. The two points of interest here

will be whether the effect of temperature on the magnetic

axes in Aplysia metMbCN confirm a looser heme pocket than

in sperm whale metMbCN, and whether Aplysia metMbCN

exhibits any evidence for significant population of an inter-

mediate before its global unfolding at elevated temperature.

MATERIALS AND METHODS

Protein

Aplysia limacina Mb was isolated and purified as described in detail previ-

ously (21). The cyano-metmyoglobin complex, metMbCN, was prepared

;1 mM in 2H2O, 100 mM in phosphate, and 10 mM in KCN, at pH 8.3.

NMR spectroscopy

1H NMR spectra was recorded on a Bruker AVANCE 500 spectrometer

operating at 500 MHz (Bruker AXS, Madison, WI). Reference spectra from

5� to 85�C were collected over a 42.0 KHz bandwidth at a repetition rate of

2 s�1.The spectra were exponentially apodized with 5-Hz line broadening.

NOESY spectra (22) (60-ms mixing time) in 10� intervals between 5� and

85�C were recorded at 500 MHz over a 30 kHz bandwidth using 256 t1

blocks of 64 scans each and 2048 t2 points at a repetition rate of 3 s�1. The

two-dimensional data sets were apodized by 30�-shifted-sine bell-squared

function and zero-filled to 2048 3 2048 points before Fourier trans-

formation.

Optical and CD spectra

Thermal denaturation was carried out by equilibrating a 5- or 10-mM protein

solution in 0.1 M sodium phosphate buffer, pH 8.1, containing 2 mM

sodium cyanide, between 20 and 92�C. The reversibility was found to be

.90%. The optical spectra were recorded on a Hewlett-Packard 8453

spectrophotometer (Palo Alto, CA) and the circular dichroic spectra on

a Jasco J715 spectrometer (Tokyo, Japan), both equipped with a Peltier cell.

Circular dichroic spectra were measured between 200 and 300 nm both at

single temperature values and by increasing the temperature by 1�C/min

between 20 and 92�C. The data were analyzed according to a standard two-

state equation (23) for thermal unfolding,

DGD�NðT2Þ ¼ DHD�NðT1Þ 1DCpðT2 � T1Þ
� T2ðDSD�NðT1Þ 1DCpðT2=T1ÞÞ; (4)

where DCp was estimated from the size of the protein and from literature

data (24,25). Variation of the value of DCp does not affect the calculation of

the free energy of unfolding. Three measurements were averaged to deter-

mine the Tm.

Magnetic axes determination

The anisotropies, (Dxax, Dxrh), and orientation (a,b), of the paramagnetic

susceptibility tensor, x, were determined from a five-parameter, least-

squares search for the minimum in the error function, F/n (10,16,26):

F=n ¼ +
n

i¼1

jddipðobsÞ � ddipðcalcÞj2: (5)

Error analyses were performed with the Levenberg-Marguard method with

boundaries of the error function, F/n, set equal to 95.4% of the confidence

limit (27,28). The ddip(calc) are given by Eq. 2, and the observed dipolar

shifts for noncoordinated residues are given by

ddipðobsÞ ¼ dDSSðobsÞ � dDSSðdiaÞ; (6)

where dDSS(obs) is the observed chemical shift, referenced to DSS,

for metMbCN, and dDSS(dia) is the chemical shift, referenced to DSS,

for a diamagnetic structural analog. In the absence of NMR data for

a diamagnetic analog, such as MbCO, dDSS(dia) have been reliably

estimated (29,30) by available programs for determining chemical shifts in

folded proteins (31,32), to which are added the ring currents of the heme

FIGURE 1 Structure of the heme with the reference coordinate system x9,

y9, z9 (R, u9, V9) and magnetic coordinates system, x, y, z (R, u, f), shown.

The x9, y9 plane is given by the mean plane of the heme in the crystal

structure, with the x9 axis passing through the pyrrole B nitrogen, and the z9

axis normal to the heme and oriented to the proximal side. The positions

relative to the heme of the residues whose proton dipolar shifts were used to

generate the magnetic axes are also shown (proximal residues as rectangles,

distal residues as circles). The angle a and k¼ a1 g are defined; not shown

is the angle b, which measures the tilt of the major magnetic axis, z, from the

heme normal, z9.
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(33). The Aplysia metMbCN crystal structure (34) was used. The contact

shift, dcon, for ligands to the iron (heme and axial His) were determined via

dcon ¼ dDSSðobsÞ � dDSSðdiaÞ � ddipðcalcÞ: (7)

RESULTS

Optical studies

The thermal unfolding profile of Aplysia metMbCN was

monitored by far UV-CD and absorbance spectroscopy. As

shown in Fig. 2, a single cooperative transition is seen by CD

with a Tm ¼ 354.1 6 1 K (81�C); the same behavior is seen

following the transition at 423 nm (data not shown). The posi-

tion of the high-temperature absorbance supports the re-

moval of the heme from the specific environment provided

by the hydrophobic pocket, but does not shed light on

whether the only His present in the protein, His F8, is still

bound to the heme iron.

1H NMR studies

The 500 MHz 1H NMR spectra of Aplysia metMbCN as a

function of temperature in the range 15–86�C are illustrated

in Fig. 3. The resonances in the resolved portion of the spectral

window (outside the 0–10 ppm diamagnetic portion), as well

as the majority of nonresolved but hyperfine-shifted residue

protons, have been unambiguously assigned and reported

previously (6,12), and the peaks are labeled accordingly in

Fig. 3. We address only the major (;75%) heme orientational

isomer in solution; resolved peaks for the minor component

(previously assigned (6)) are marked by small stars.

It is observed that all resolved resonances change chem-

ical shifts with increasing temperature, with the shifts of the

majority of the signals approaching the diamagnetic spectral

window, as expected for the approximate Curie law for the

spin magnetization (10,15,19,20,35). However, at ;75�C,

prominent, narrow, new composite signals appear in the

0–10 ppm window whose intensities increase dramatically

at higher temperature (Fig. 3, D–F). The intensities of the

hyperfine-shifted resonances decrease until 80�C, where all

chemical-shift dispersion indicative of a folded protein is

lost, with the most dramatic change obvious in the aromatic

spectral window 5–10 ppm. The loss of spectral dispersion in

the diamagnetic spectral window 0–10 ppm, and the loss of

the hyperfine-shifted signal, are taken as direct evidence that

the protein has unfolded. It was not possible to detect at 85�C
any hyperfine-shifted and relaxed signals in the �30 to 10

and 0–45 ppm window that would arise from a paramagnetic

hemin (36,37). The 1H NMR spectra are completely revers-

ible with temperature. Although some precipitation occurred

near 75�C in several instances, the protein redissolved, and

the 1H NMR spectra were completely reproducible, upon

cooling. The NMR data are also consistent with cooperative

unfolding with a Tm ;77�C. The value is consistent with that

obtained by UV-CD and visible spectroscopy, considering

that the protein concentration and the pH are different in the

two studies.

The chemical shifts for previously assigned protons experi-

encing significant dipolar shifts (6,12,30), which can be

expected to occupy relatively fixed positions in the complex

(i.e., no flexible long-chain termini), and which were as-

signable over the complete temperature range, were deter-

mined in ;10� intervals over the temperature range 7–85�
(not shown). The plots of chemical shift versus reciprocal

absolute temperature (Curie plot) for the heme methyls and

meso-Hs, and the axial His(F8) CbH are shown in Fig. 4.

Similar representative data for the Phe98(FG2) variant’s

hyperfine-shifted proton’s signals for the nonligated residues

(see Supplementary Material for data on other residues) are

illustrated in Fig. 5. The variable temperature data for the

iron ligands, the porphyrin methyls, meso-Hs, and axial

His(F8) CaH, all fall on a straight line over the whole

temperature range, including the unfolding, and give no hint

of deviations indicative of population of intermediates even

at the highest temperature. The nonligated residues that

exhibit significant dipolar shifts (12,30) such as Phe98(FG2)

(Fig. 5), Phe91(F4), Phe43(CD1), and Val63(E7) (not shown;

see Supplementary Material), among others, exhibit simi-

larly straight lines through the unfolding transition.

Magnetic axes

The magnetic axes determination used the observed dipolar

shifts for all protons or residues that can be expected to

occupy unique and fixed positions relative to the iron, as

defined by the coordinates of an Aplysia Mb crystal structure

FIGURE 2 Thermal denaturation of Aplysia metMbCN as a function of

temperature in the range 20–92�C (293–365 K) in 100 mM phosphate pH

8.1 and 2 mM NaCN. The graph shows the CD data at 222 nm recorded at 1�
intervals on a 4-mM protein solution (light path ¼ 0.1 cm). The open

triangles on the main graph are points recorded at single temperature values

after equilibrating the protein solution for 10 min. The solid triangle

indicates the value corresponding to a protein solution kept at 92�C for 10

min and slowly cooled down to 20�C. The continuous line is a fit to Eq. 4.
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(34,38) and are readily assignable in the relative brief times

(;30 min) allowed for NOESY spectrum collection at ele-

vated temperatures. These residues are identified in the cap-

tion to Fig. 6. The ddip(obs) values, as a function of temperature

(not shown), were used to carry out five-parameter searches

for the anisotropies, Dxax and Dxrh, and the three Euler

angles, a, b, and g, for which b defines the tilt of the major

(i.e., z-) magnetic axis from the heme normal, a represents

the direction of the tilt, and g is defined by the angle between

the projection of the major magnetic axis on the heme plane

and the x9 axis. The location of the x,y, or rhombic, axes is

approximated by k; a1 g; the three angles a, b, and k are

FIGURE 3 500 MHz 1H-NMR spectra of Aplysia

metMbCN as a function of temperature at pH 8.6. The

previously assigned (12,30) resolved peaks are labeled for

the major isomer (;75%) in solution (M ¼ methyl, P ¼
propionate, and V ¼ vinyl); minor component (;25%)

peaks are marked by small stars.

FIGURE 4 Plot of dDSS(obs) versus reciprocal absolute temperature

(Curie plot) for the iron-ligated heme and axial His(F8) protons of Aplysia

metmbCN in 2H2O, 100 mM in phosphate, pH 8.6; 1-CH3 (h), 3-CH3 (n),

5-CH3 (,), 8-CH3 (s), a-meso-H (n), b-meso-H (:), g-meso-H (;),

d-meso-H (d), and His(F8) CaH (w).

FIGURE 5 Plot of dDSS(obs) versus reciprocal absolute temperature

(Curie plot) of nonligated Phe98(FG2) in Aplysia metMbCN in 2H2O; the

solid circles, squares, and triangles represent CdHs, CeHs, and CzH shifts,

respectively.
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depicted in Fig. 1. For each temperature, very low minima in

the residual error function, F/n (Table 1), in the least-squares

searches, were found at all temperatures between 7� and

68�C, and the correlation between ddip(obs) and ddip(calc) at

each temperature is quite good, as illustrated in Fig. 6. The

five determined parameters are listed in Table 1 as data sets

II–VIII.

The magnetic axes and anisotropies were also determined

at 25�C using the more extensive assignments previously

reported (12,30) (Table 1, data set I). The 25�C orientation,

a ¼ 97 6 8�, b ¼ 11.6 6 0.5, and k ¼ 27 6 5�, and

anisotropies, Dxax ¼ 2.226 0.06 3 10�8 m3/mol and Dxrh ¼
�0.55 6 0.06 3 10�8 m3/mol, are consistent with the earlier

determination (30) where the latter parameters are adjusted

for the redefinition (29) of the reference frame through

pyrrole Ns, rather than meso-carbons (30), and the reference

of a to the positive, rather than negative x-axis. The results of

the magnetic axes determination at 25�C (Table 2, data set II)
using the 21 input data sets available through the temperature

range 7–68�C, are observed to be within the uncertainties of

the parameters using the larger data set.

Both anisotropies exhibit straight lines in a plot of Dxax

and Dxrh versus reciprocal absolute temperature (Curie plot),

as illustrated in Fig. 7 B. The systematic, and expected

(17,39), temperature dependence of the anisotropies, is fur-

ther support for the accuracy of the magnetic axes deter-

mination. The values of the angles, a, b, and k, as a function

of temperature, are similarly graphed in Fig. 7 A. The direc-

tion of the tilt, a, and the rhombic axes, k, are essentially

independent of temperature. The magnitude of the tilt, b,

however, decreases slightly, but systematically, with in-

creasing temperature, as shown in Fig. 8 A. Although the

determination of magnetic axes using different Aplysia Mb

crystal coordinates (34,38) resulted in small differences in

the five parameters (30) (in large part due to the different

definition of the reference coordinate system due to variable

nonplanarity of the heme), the effect of temperature on the

parameters was essentially independent of the crystal coor-

dinates (not shown).

Factoring the heme and His(F8) hyperfine shifts

The quantitative determination of the magnetic axes in the

temperature range 5–68�C provides the ddip(calc) that allows

determination of dcon via Eqs. 2 and 7. The resulting dcon at

25�C for the four heme methyls, four meso protons, and the

axial His96(F8), are listed in Table 2, where they can be com-

pared to similar data previously reported for sperm whale

metMbCN (29). With the well-behaved magnetic axes aniso-

tropies with variable temperature (Fig. 7 A), it is possible to

generate ddip(calc), and hence dcon, over the complete tem-

perature range 5–68�C. The Curie plots for the heme methyl

dcon are illustrated in Fig. 8.

DISCUSSION

Unfolding of Aplysia metMbCN

The change in far UV CD spectrum as a function of temper-

ature (shown in Fig. 2) is characteristic of the cooperative

unfolding with a melting temperature of ;81�C. Although

the features of the CD spectrum at the end of the transition

(92�C) do not allow a reliable calculation of the residual

secondary structure content, the comparison of this spectrum

with that of a fully unfolded Aplysia metMbCN in 7 M urea

(not shown) at 25�C indicates that some CD signal is still

present at 92�C. This finding is not incompatible with a

residual secondary structure content in the high-temperature

denatured state. The intrinsic stability of Aplysia myoglobin

to temperature denaturation is reflected in the behavior of the

apoprotein (9) and is unchanged in a site-directed mutant,

where the Trp130 in the H helix was replaced by a Tyr (40).

The 1H NMR data in Fig. 3 show that the well-dispersed 1H

NMR spectrum in both the diamagnetic (0–10 ppm) and

hyperfine-shifted (17–10 and 0–7 ppm) windows loses in-

tensity above 55� and is replaced by a spectrum solely within

the 1–7 ppm diamagnetic window, with dispersion charac-

teristic of the amino acid composition of the protein. This

loss of dispersion is most apparent in the aromatic window

FIGURE 6 Plot of ddip(obs), obtained via Eq. 6 versus ddip(calc) obtained

from the optimized magnetic axes (Eqs. 2 and 5) as a function of tem-

perature, with the parameter for each temperature listed in Table 1, at (A)

7�C, (B) 25�C, (C) 47�C, and (D) 68�C. The 21 inputs include: F43(CD1)

CaH; F46(CD4) CaH, CdHs, CeHs; I67(E11) CaH; A92(F5) CaH, CbH3;

H95(F8) CaH; V96(F9) CbH, Cg1H3, Cg2H3; F98(FG2) CdHs, CeHs, CzH;

V100(FG4) Cg1H3, Cg2H3; F105(G5) CzH; and V108(G8) CaH, CbH, Cg1H,

Cg2H.

NMR of Aplysia metMbCN Unfolding 4153

Biophysical Journal 89(6) 4149–4158



5–8 ppm in Fig. 3 E. Although the optical and 1H NMR data

agree on the loss of most of the tertiary and secondary

structures, it is not clear whether the Fe-His(F8) bond is

retained above 75�C. Free hemin should lead to resolved

methyl peaks in the 10–18 ppm spectral window in the

presence of the excess cyanide, which are not seen (36,37).

Alternatively, a His-Fe13-CN� linkage should similarly ex-

hibit resolved peaks for both heme and His CbHs. The failure

to observe any hyperfine-shifted signals outside the 1–7 ppm

window at the elevated temperatures does not provide

a definitive answer. The likely case is that the hydrophobic

hemin, as a His-Fe13-CN� or NC-Fe13-CN� species, is still

associated within limited, loosely structured portions of the

unfolded protein, and the heterogeneity of numerous such

environments leads to severe line broadening that renders the

hyperfine-shifted peaks undetectable.

The heme hyperfine shifts are extraordinarily sensitive

probes of the orientation of the axial His relative to the heme

TABLE 1 Magnetic axes determinations for Aplysia metMbCN

Orientation*

Data Sety Nz T, �C a§ b§ k ¼ a 1 g§ Dxax 3 10�8m3/mol{ Dxrh 3 10�8m3/mol{ F/n,* (ppm)2

I{ 77 25 97 6 4 11.7 6 0.5� 27 6 5 2.22 6 0.06 �0.55 6 0.06 0.05

IIk 21 7 106 6 5 12.5 6 0.5� 26 6 4 2.63 6 0.08 �0.79 6 0.09 0.06

II 21 15 106 6 5 12.3 6 0.6� 26 6 4 2.48 6 0.08 �0.72 6 0.09 0.06

II 21 25 105 6 5 11.8 6 0.6� 26 6 4 2.34 6 0.08 �0.62 6 0.09 0.06

II 21 35 105 6 6 11.5 6 0.7� 24 6 5 2.20 6 0.08 �0.55 6 0.09 0.06

II 21 46 105 6 7 11.1 6 0.7� 24 6 7 2.06 6 0.09 �0.49 6 0.09 0.07

II 21 57 105 6 8 10.0 6 0.8� 24 6 8 1.92 6 0.9 �0.43 6 0.09 0.07

II 21 68 105 6 9 10.2 6 0.8� 24 6 9 1.82 6 0.09 �0.38 6 0.10 0.07

III** 25 150 6 10 15.8 6 0.6� �10 6 5 2.48 6 0.10 �0.59 6 0.10

*Residual error function, (Eq. 4), after minimization.
yInput ddip(obs) data set.
zNumber of protons in each input data set.
§Euler angles, in degrees, as defined for Eq. 2 and in Fig. 1.
{Data set I used all residues with a proton with ddip . j0.5jppm, and was presented previously (30).
kData set II consists of expected rigid protons with significant ddip(obs) which are unambiguously assigned at all temperatures; they are identified in the

caption to Fig. 6.

**Magnetic axes and anisotropies reported for sperm whale metMbCN (29).

TABLE 2 Factoring hyperfine shifts for heme and His(F8) of Aplysia metMbCN

Aplysia metMbCN Sperm whale MetMbCN

Proton dDSS(obs)* dDSS(dia)y dhf
z ddip(calc)§ dcon

{ dcon
k

Heme

1-CH3 11.80 3.6 6 0.1 8.2 6 0.1 �2.8 6 0.3 11.0 6 0.4 18.0 6 0.2

3-CH3 17.79 3.6 6 0.1 14.2 6 0.1 �5.0 6 0.4 19.2 6 0.5 6.0 6 0.2

5-CH3 15.62 2.8 6 0.2 12.8 6 0.1 �3.3 6 0.3 15.3 6 0.4 27.5 6 0.2

8-CH3 9.95 3.6 6 0.1 6.3 6 0.1 �4.0 6 0.3 10.4 6 0.4 14.7 6 0.2

6-Has** 16.5 3.5 6 0.5 13.0 6 0.5 �3.6 6 0.8 16.6 6 1.3

7-Has** 4.3 3.5 6 0.5 0.8 6 0.5 �4.5 6 1.0 5.3 6 1.5

a-meso-H 0.96 10.0 6 0.5 �9.0 6 0.5 �11.7 6 1.2 2.7 6 1.7 6.6 6 0.5

b-meso-H 5.93 10.0 6 0.5 �4.1 6 0.5 �8.3 6 1.0 4.2 6 1.5 2.8 6 0.4

g-meso-H �0.44 10.0 6 0.5 �10.4 6 0.5 �12.9 6 1.4 2.5 6 1.9 6.3 6 0.4

d-meso-H 4.99 10.0 6 0.05 5.0 6 0.5 �6.9 6 1.1 1.9 6 16 6.1 6 0.5

His(F8)

Cb1H 10.55 1.2 6 0.2 9.3 6 0.2 6.5 6 0.8 2.8 6 1.0 3.4 6 0.2

Cb2H 10.73 1.2 6 0.2 9.5 6 0.2 6.8 6 0.8 2.7 6 1.0 0.8 6 0.2

CeH �2.35 1.6 6 0.2 �4.0 6 0.2 18.0 6 2.0 �22.0 6 2.0 19.0 6 1

CdH 18.35 1.3 6 0.2 �17.0 6 0.2 25.0 6 3.0 �8.0 6 3.0 �1.1 6 0.8

NdH 14.30 9.0 6 1.0 5.3 6 1.0 9.9 6 0.9 �4.6 6 1.9 �3.5 6 0.3

*Chemical shift in ppm, referenced to DSS, in 2H2O at pH 8.6 and 25�C.
yChemical shift of a diamagnetic structural analog.
zHyperfine shift, in ppm at 25�C, defined as dDSS(obs)�dDSS(dia).
§Dipolar shift, in ppm at 25�C, as calculated from the optimized magnetic axes for data set II in Table 1.
{Contact shift, in ppm at 25�C, obtained from Eqs. 1 and 2.
kPreviously reported (29) contact shift, in ppm at 25�C, for sperm whale metMbCN in 2H2O at pH 8.6.

**Mean of the geminal protons.
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(10,18–20,41), whereas the axial His(F8) hyperfine shifts are

extremely sensitive to both the nature of the Fe-His(F8) bond

and the heme Fe-CN tilt (10,17,29,39). The solely dipolar

shifts for the nonligated residues are exquisitely sensitive

probes for the disposition of the residue relative to the heme,

the magnetic axes, and anisotropies. The surprisingly well-

behaved Curie plots for heme (Fig. 4), His(F8) (Fig. 4), and

nonligated residue (Fig. 5) protons over the complete tem-

perature range 5–79�C provide compelling evidence against

detectable populations of any partially unfolded intermedi-

ate, which influences the heme environment.

The unfolding temperature of Aplysia metMbCN is higher

than that reported for other derivatives of the same protein

(7), which is, to a first approximation, consistent with a

greater value of the folding free energy for cyanomet deriv-

atives. The superior solubility properties and 1H NMR spec-

tral parameters highly sensitive to even minor structural

perturbations are expected to significantly improve the

prospects for detecting partially unfolded intermediates for

Aplysia metMbCN mutants.

Magnetic properties

The similarly detailed orientation and anisotropies, as well as

their temperature dependence, for sperm whale metMbCN

have been reported previously (29). The axial anisotropies

are consistently ;5% smaller for Aplysia (2.34 6 0.08 3

10�8 m3/mol at 25�C) than sperm whale (2.48 6 0.08 3

10�8 m3/mol at 25�C). The rhombic anisotropies are essen-

tially the same at �0.60 6 0.10 3 10�8 m3/mol. Moreover,

the temperature dependence for both Dxax and Dxrh for

Aplysia metMbCN is essentially the same as reported for

sperm whale metMbCN (29), both of which are consistent

with the theoretical predictions of Horrocks and Greenberg

(17,39).

The magnitude and direction of the tilt of the major mag-

netic axes in Aplysia metMb were shown to be consistent

with an interaction of the Arg60(E10) NeH with the bound

cyanide in both solution (30) and crystal (34). The different

orientation and larger tilt of the major magnetic axis, and

hence Fe-CN vector, in sperm whale metMbCN to provide

a stabilizing H-bond to the ligated cyanide, have been

rationalized by steric interaction with Val68(E11) (16,42).

The rhombic axes are predicted to follow the counter-

rotation rule, where k is related to the angle, f (but in op-

posite direction), of the axial His(F8) imidazole plane

relative to the x9 axis (18–20,41) (Fig. 1). The k ; �10 6

10� in sperm whale Mb is consistent (29,43) with the f;0�.
The much larger k ; 27 6 10� for Aplysia metMbCN is

similarly consistent (34,38) with f ;35�.
The asymmetry in hyperfine shifts for the heme pyrrole

substituents is dominated by contact shifts (10,18–20) (see

below), whereas those for the meso-Hs have been shown

(10,11,44,–48) to be dominated by the dipolar shifts. Thus,

the observed 25�C chemical shift parameter (44,46–48) is

Dd-ðmesoHÞ ¼ dDSSða-meso-HÞ � dDSSðb-meso-HÞ
1 dDSSðg-meso-HÞ � dDSSðd-meso-HÞ

¼ �10:4 ppm (8)

(see Table 2), which is indistinguishable from the predicted

value at 25�C D(ddip) ¼ ddip(a-meso-H) � ddip(b-meso-H)

1 ddip(g-meso-H) � ddip(d-meso-H) ¼�9.4 6 2.3 ppm (see

Table 2).

Electronic structure

The factored hyperfine shifts for the heme and axial His(F8)

are given in Table 2. The pattern of dcon for the axial His are

very similar to those reported previously (29) for sperm

whale metMbCN. The apparent slightly larger dcon for the

axial His(F8) (Table 2) and the slightly smaller Dxax (Fig. 6)

in Aplysia than sperm whale metMbCN suggest that the

His(F8)-Fe bond might be slightly stronger in the former

than the latter metMbCN complex. The orientation of a His(F8)

with the imidazole plane close to parallel to N-Fe-N
FIGURE 8 Plot of dcon versus reciprocal absolute temperature (Curie plot)

for the heme methyls (1-CH3, d; 3-CH3, s; 5-CH3, ;; and 8-CH3, ,).

FIGURE 7 Plot of (A) angles, a, b, and k, that define the orientation of the

magnetic axes; and (B) the magnetic anisotropies determined from five-

parameter least-square searches over the temperature range 7–68�C. The

uncertainties in each parameter are given by vertical error bars.
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vector (f ;0� in Fig. 1) has been associated (49) with

the introduction of some strain in the axial bond in a six-

coordinate complex due to steric interaction between the

axial His CeH and CdH with the two trans pyrrole nitrogens

of the heme. This steric effect, for Aplysia Mb, must be

small, since the His ring is oriented (34,38) with f near 35�
(Fig. 1). The stronger His(F8)-Fe bond would increase the

(dxz, dyz)�dxy spacing that leads to a reduction of Dxax, and

an increase (17) in His(F8) dcon. Unfortunately, although

these trends are observed, the parameters are not clearly

distinguishable outside the uncertainties. Studies in progress

on the cyanomet complex of leghemoglobin, for which

stronger His(F8)-Fe bonding due to f ;40� has been pro-

posed (49), may shed further light on this potential corre-

lation among Dxax, dcon(His(F8)), and f.

The pattern of dcon for the heme methyls in Aplysia
metMbCN (6), on the other hand, differs significantly from

that in sperm whale metMbCN (50,51). The value of Q in Eq.

3 is given by Q ¼ Acos2C, where C is the H-C-Cp-z*
dihedral angle (10,15) (z* is the normal to the heme through

Cp). For a methyl group, Æcos2Cæ ¼ 0.50, while for the most

common methylene orientation, whereC¼ 60 6 10� for each

proton, cos2C¼ 0.25. Hence the same rp in Eq. 3 will lead to

dcon only half as large for a propionate CaH as for a methyl.

Thus, the largest p-spin density (via Eq. 3) appears for the

positions 1-, 2-, and 6-positions. This pattern is qualitatively

consistent with the symmetry properties of the two 3ep
molecular orbitals (10,37), determined by the orientation of

the axial His imidazole plane relative to the heme.

The determination of the orientation and anisotropies of

the paramagnetic susceptibility tensor over the temperature

range 7–68�C provides quantitative data for ddip for the heme

methyls at each temperature, and hence, provides dcon as

a function of temperature. A plot of dcon(heme CH3) versus

T�1 is shown in Fig. 7. It is observed, typical for low-spin

ferric hemoproteins (10,20,35), that the temperature de-

pendence of dcon for the four methyls differ, in that two

exhibit stronger temperature dependence than Curie (T�1)

and two exhibit weaker temperature dependence than T�1

(but do not exhibit anti-Curie, i.e., negative slope). This

behavior is indicative of thermal populations of the excited

component of the 3ep MO, as discussed in detail for other

low-spin ferric hemoproteins (19,20,35).

The temperature dependence of dDSS(obs) has been

modeled by an equilibrium between the ground state doublet

and its thermally populated doublet, which has its magnetic

axes rotated by 90� relative to the ground state (19,20,35).

This model predicts that increased, less positive Curie slopes

for the heme methyl with small dDSS(obs) as the spacing of

the levels increases, with these two methyls exhibiting anti-

Curie behavior (negative slope in Curie plot) if the level

spacing is large enough. It is noted here that, while 8-CH3

exhibits anti-Curie behavior (negative Curie slope) for

dDSS(obs), the correction for the ddip(calc) as a function of

temperature leads to a 8-CH3 dcon with positive Curie slope.

Hence, the temperature dependence of dcon suggests a smaller

splitting between the two spin doublets than indicated by

dDSS(obs) and confirms the importance of correcting for the

dipolar shift (29) before interpreting deviations from Curie

behavior in terms of the spacing between the two orbital

states.

Lastly, it is observed that each of the meso-Hs exhibit 2–4

ppm low-field dcon, as previously observed for sperm whale

metMbCN (29), which is contrary to the difference in the a-/

d-meso versus b-/d-meso-H dcon as predicted (18) by the

prevailing model for hyperfine shifts in low-spin ferric

hemins. The failure to account for meso-H dcon patterns in

other metMbCN complexes has been noted previously (52).

Detailed calculations of the unpaired spin distribution in

low-spin ferric hemes have shown that correlation leads to

both positive and negative spin density on the heme periph-

ery that cannot be interpreted simply based on MO theory of

p-spin density in a single molecular orbital (53) .

Plasticity of Aplysia metMbCN

The perfectly linear temperature dependence of hyperfine

shifts and magnetic anisotropy over the temperature range

through unfolding dictate the absence of partially unfolded

intermediates, but do not guarantee a completely tempera-

ture-independent molecular structure, as long as the struc-

tural change is continuous. The plot of the Euler angles versus

temperature in Fig. 6 A shows that, whereas direction of tilt,

a, and the rhombic axes, k ¼ a 1 g, are invariant, the mag-

nitude of the tilt, b, decreases monotonically with temper-

ature. The difference in b between 5� and 68�C is outside the

uncertainties in the values. This is in contrast with obser-

vations (29) for sperm whale metMbCN, where the tilt, b, is

larger and invariant between 5� and 50�C. Hence, since the

major magnetic axes correlates with the Fe-CN vector (10,16),

the degree of Fe-CN tilt in sperm whale is temperature-

independent, but this Fe-CN tilt is reduced with increasing

temperature for Aplysia metMbCN. Such an effect indicates

that the tilted Fe-CN lies in a steeper potential well in sperm

whale than in Aplysia metMbCN, or that the distal cavity

structure is somewhat more plastic in the latter than the for-

mer complex.

These conclusions are in accord with several other exper-

imental data. Thus, protohemin reorients about the a-g-meso

axis much more rapidly (5), and the lability of the axial

His(F8) NdH is greater (6) in Aplysia than sperm whale

metMbCN (54), both of which have been interpreted as

representing a dynamically less stable heme cavity structure

in the former than the latter myoglobin.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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